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The Hannover Messe 2025 Showcase

Digital transformation is reshaping industries, driving products toward intelligent, software-
defined solutions. However, increasing complexity poses significant challenges. To address 
these, a structured approach combining Systems Engineering, AI-driven development, and 
Virtual Validation is essential. Our showcase demonstrates these key concepts using a real-
world example: traffic sign recognition in a vehicle. 
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Introduction

1  Four Big Challenges Every Systems Engineer Faces Today.

The digital transformation is reshaping industrial and automotive products, transitioning 
them from electromechanical systems to intelligent, software-driven solutions. Cloud 
technologies, IoT, and AI enable entirely new functionalities that enhance user experience 
and set new industry standards. These advancements pave the way for innovative business 
models, such as digital services and personalized customer experiences. At the same time, 
customer expectations have evolved. They now demand smart products that are always up 
to date, easy to use, and customizable to individual preferences.

While these advancements bring enormous opportunities, they also introduce significant 
challenges. The complexity of developing and maintaining software-defined products 
has increased dramatically, making traditional development methods insufficient. The 
challenges associated with this transformation can be categorized into four primary areas.

Managing these complexities with traditional development methods is highly challenging 
and often leads to inefficiencies and increased risks. The increasing integration of software, 
evolving product architectures, and accelerating market demands require new approaches 
to ensure efficiency, reliability, and compliance across the entire product lifecycle. 

 Software defined products
 System of Systems
 Multi-domain
 New Technologies (e.g. AL)
 Variants and Platforms
 Shorter Product Lifecycles (TTM)
 Continuous Development
 Agile Engineering
 Circular Economy
 End of Life Management

System  
Complexity

System  
Dependability

Regulatory & 
Ethical  
Compliance

Multidisciplinary 
Collaboration

 Large Organisations
 Interdisciplinary Teams
 Partner and supply chains
 Global cooperation
 Cultures, Timezones, Languages
 Agile and hybrid methodologies
 Product as a service models

 Safety
 Cybersecurity
 Reliability
 Avalability
 Resilience
 Sustainability

 Regulatories
 Legal
 Directives
 Norms
 Privacy

Transformation
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2  The Transformation Challenge

The introduction of a holistic systems engineering approach is not just about purchasing 
and integrating new tools. It represents a fundamental transformation of the development 
process and requires a structured approach tailored to an organization’s current maturity 
level. This transformation encompasses adjustments to processes, methods, toolchains, 
and IT systems, involving their definition, rollout, and continuous optimization.

The primary focus of this whitepaper is on the aspect of Model-Based Systems Engineering 
(MBSE), which we will detail in the following sections and demonstrate through our showcase.

3  MBSE: Your Single Source of Truth for Complex Systems

In today’s rapidly evolving product development landscape, both organizational and 
technical dependencies are dramatically increasing. Products are becoming interdisciplinary, 
development cycles more agile and faster, and expectations for transparency and end-
to-end consistency have never been higher. Traditionally, systems engineering has relied 
on documents or various discipline-specific tools that describe different aspects - such as 
specifications, functional descriptions, or interface documentation - in natural language. 
However, these documents frequently contain redundant information, quickly losing 
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consistency over time and across multiple contributors. Additionally, natural language is 
often ambiguous, information is scattered, and administrative overhead remains substantial 
as different stakeholders require individually tailored views.

How can these challenges be addressed effectively? MBSE offers a powerful solution. With 
MBSE, all critical information relevant to systems engineering - such as requirements, 
interfaces, systems, functions, properties, and parameters, - is captured and defined 
centrally within a single, cohesive database or model. Dependencies among elements 
are explicitly represented through hierarchical structures, instantiations, or linkages. A 
standardized notation, such as the Systems Modeling Language (SysML), is utilized. SysML 
Version 1 extends the Unified Modeling Language (UML), while the upcoming Version 2 
introduces further enhancements specifically designed for systems engineering.

This centralized model enables stakeholders to generate multiple tailored views suitable 
for diverse project phases or specific stakeholder needs. Such views may include various 
SysML-defined diagrams (e.g., block diagrams, activity diagrams, sequence diagrams), 
structured lists (such as Bill of Materials or interface definitions), code artifacts, or even 
traditional documents required by reviewers or regulatory authorities.

The benefits of adopting MBSE are significant:

Consistency: Because each element exists only once within a central model, all derived views 
and documentation consistently reference the same information, eliminating redundancy 
and discrepancies.

Transparency: Centralizing information enhances visibility across disciplines and 
departments, promoting communication, collaboration, and reducing silo mentality.

Traceability: Explicitly modeled dependencies significantly improve traceability, vital for 
verification processes, safety-critical systems, comprehensive testing, and impact analyses 
necessary for managing system changes.

Clarity: Using a standardized, structured notation reduces ambiguities typically associated 
with natural language, ensuring greater precision and clearer communication.

In short, MBSE fundamentally transforms systems engineering by providing a unified, 
transparent, traceable, and precise approach to managing complexity in product 
development.
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The Hannover Messe 2025 Showcase

1  Integrating Requirements Engineering into Model-Based Systems Engineering

In the realm of system development, defining system requirements is a crucial step that is 
often facilitated by specialized requirements engineering tools. These tools play a vital role in 
capturing, analyzing, and managing requirements to ensure that the final system meets the 
intended needs and specifications. However, as the complexity of systems increases, there 
is a growing need to integrate requirements engineering into a model-based environment, 
thereby ensuring the continuity of the digital thread throughout the development process.

Model-Based Systems Engineering (MBSE) offers a powerful approach to system 
development by providing a structured framework for modeling and analyzing complex 
systems. While MBSE does not replace traditional requirements engineering, it enhances 
its capabilities by making it an integral part of the digital thread. This integration allows for 
seamless traceability and verification of requirements, ensuring that they are consistently 
linked to architecture model elements.

One of the key benefits of shifting to model-based requirements engineering is the ability 
to demonstrate standard-compliant traceability. By linking requirements directly to 
architecture model elements, organizations can provide proof of traceability that meets 
industry standards. This is particularly important in regulated industries where compliance 
with standards is mandatory.

Requirements can be directly modeled using languages such as SysML, which provides a 
standardized way to represent system requirements within the model-based environment. 
Additionally, requirements can be imported or reflected into the model-based environment 
using lifecycle management tools and standardized interfaces like Open Services for Lifecycle 
Collaboration (OSLC). This flexibility ensures that requirements are accurately captured and 
maintained throughout the system development lifecycle.
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Showcase implementation

The development of an Advanced Driver Assistance System (ADAS) controller, specifically 
designed for traffic sign recognition, is a complex process that involves several critical steps. 
This showcase highlights the creation of an ADAS controller, referred to as ADS, using the 
example of a traffic sign recognition system as part of the system functionality.

The initial phase of the development process is the definition of system requirements, as 
illustrated in figure 1. These requirements serve as the foundation for the subsequent mod-
el-based architecture and behavior specification. They establish the functional framework 
necessary for the traffic sign recognition system and outline the intended reactions of the 
ADAS controller. The showcase uses basic SysML notation for the modeling of the require-
ments directly in the MBSE toolchain.

System 
Requirements

System 
Architecture / Static 

Behavior
Analysys

Dynamic Behavior 
Analysis / Executable 

model

Traced to Reqiurements

Data exchange

Simulates static behavior

Validation results

Import (e.g. OSLC)

MBSE / SysML-Model

MIL (Model in the loop)

AI on edge

ADAS simulation

PLM system
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The primary function of the system is to accurately recognize speed limitations and identify 
potential danger areas on the road. Recognized speed limits are then used as input for the 
Adaptive Cruise Control (ACC) system. This integration ensures that the vehicle adjusts its 
speed according to the detected traffic signs, enhancing safety and compliance with road 
regulations.

In cases where errors occur in the detection of traffic signs or when warning signs, such as 
upcoming road works, are correctly identified, the system is designed to deactivate the ACC. 
Additionally, a warning message is issued to the driver, alerting them to the situation and 
prompting them to take appropriate action.

Figure 1 Excerpt from the list of system requirements displayed in a table format
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To ensure traceability, the system requirements are directly linked to use case elements 
within the model through SysML trace relationships, as depicted in figure 2. These use cas-
es form part of the forthcoming static behavioral model, providing a clear and structured 
representation of the system’s intended functionality. For the showcase only one use case 
for the reaction to recognized traffic signs is used.

Modeling use cases can be interpretated as part of the system context definition or a black 
box behavioral view. Using SysML Use Case diagrams, the involved actors, which means 
elements from the system context interacting with the system of interest, such as parts of 
the vehicle or the vehicle’s surroundings are identified. A graphical representation including 
the relationships between actors (active or passive) and the use case is shown in Figure 3.

Figure 2 Trace linkage of the use cases to the system requirements
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Analyzing the requirements gives us an indication of which actors are involved in addition 
to the system itself.

The Environment plays a vital role in the use case. It surrounds the vehicle and contains 
the traffic signs and delivers the input upon which the system will react. ADS Management 
is superordinate to the system under consideration and controls whether the system is ac-
tive or inactive. Driver Display and Longitudinal Control consume the output in form of 
the velocity setpoint and messages to the driver. It is important to mention that the actor 
Environment is substituted by the external AI on edge device.

2  Model-Based Specification of System Architecture and Static Behavior

The development of complex systems necessitates a structured approach to defining system 
architecture, which is grounded in the initial system requirements. This process involves 
creating model-based specifications that encompass various architectural representations, 

Figure 3 Modeling of the use case under consideration
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including functional, logical, and physical architectures. Each representation serves a distinct 
purpose, and their necessity must be aligned with specific project or product constraints.

Functional and logical architectures are solution-independent, focusing on the essential 
functions and logical operations of the system without delving into specific solutions. In 
contrast, physical architectures are solution-dependent, detailing the tangible components 
and their interactions within the system. The decision to include each type of architecture 
in the specification process depends on the unique requirements and limitations of the 
project or product.

Static, or non-executable, system behavior is often incorporated into the solution-
independent functional architecture. This aspect of the architecture provides a clear 
understanding of how the system is expected to function under various conditions, 
without specifying the exact implementation details.

The SysML language plays a crucial role in this model-based approach by offering 
standardized diagrams and modeling options for both architecture and behavior 
modeling. SysML facilitates essential linking and traceability relationships throughout the 
architecture and behavior model, ensuring that all elements are interconnected and can 
be traced back to the original system requirements.

One of the significant advantages of adopting a model-based architecture and behavior 
specification is the ability to integrate variant management within a Product Line 
Engineering (PLE) approach. This integration can occur on a functional basis, allowing for the 
management of different functional variants within a product line. Additionally, it supports 
trade-off studies to evaluate various physical realization variants, enabling organizations 
to make informed decisions about the most suitable physical implementations.

Showcase implementation

We now analyze the functional aspects of the “React to Traffic Signs” use case. The func-
tional analysis is separated from the foundational model and contains replicates of the use 
case and actor elements. This avoids unintended interactions when multiple analyses are 
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performed. The upcoming static behavioral modeling is clearly traceable to the respective 
use case and its related system requirements. 

The static behavior modeling process is divided into Activity Modeling and Interaction 
(Sequence) Modeling. Static behavior modeling focuses on analyzing and representing a 
system’s behavior and structure without execution. It describes how components relate to 
each other and what possible states exist, but it does not simulate changes over time or in-
teractions in real execution. The primary goal is to understand and document the system’s 
potential behavior based on predefined rules and relationships.

Activity Modeling consolidates textual requirements into a unified behavioral context, 
identifying dependencies and behavioral cases. It emphasizes the logical sequence of activ-
ities while disregarding timing aspects. By modeling a single SysML activity diagram, we cap-
ture an overarching view of system functions and interactions between the system under 
consideration and actors. The step allows capturing a white box view of the system function 
or use case. Figure 4 illustrates the activity diagram. The control flow goes from top to bot-
tom in a linear manner. Four diamond-shaped elements are located on the diagram. The 
first two form the Decision Nodes based on which the behavioral cases are differentiated. 
First node distinguishes whether the system is currently active or inactive. Nevertheless, 
three basic actions are performed right from the beginning in both cases. If the system is 
inactive, the action sequence is immediately terminated (Right-pointing path). If the system 
is active, the second node further differentiates upon which traffic sign was detected. A 
distinction is made between traffic signs indicating speed limitations, end of speed limita-
tions and hazards. Additionally, the possible case of non-interpretability is considered. Sub-
sequently individual actions are taken. The last two rhombic elements represent the Merge 
Nodes, at which the control flows converge.
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Interaction Modeling examines each possible information flow from the activity diagram, 
indicated by the decision nodes. This leads to a set of scenarios directly derived from the 
activity modeling represented by SysML sequence diagrams, incorporating relative or ab-
solute timing where needed. For verification and validation aspects, these scenarios can be 
used a basis for the test case definition.

As a bridge to dynamic (or executable) behavior modeling, this step introduces operations 
(functions performed by an element) and receptions (functions triggered by events). Argu-
ments can utilize complex SysML data structures, extending beyond primitive data types. 
Figure 5 depicts the left path of the activity diagram, where operations appear as self-mes-
sages, and receptions as inter-lifeline messages. Condition Marks, representing activity dia-
gram Guards, aid case identification.

Figure 4 Activity modeling of selected use case
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Finally, an SysML Internal Block Diagram is created as part of the system architecture, 
taking all actors and exchanged information between them and the system under con-
sideration into account. These interfaces between the system and actors are modelled as 
proxy ports, typed by interface blocks. To maintain model consistency, interface blocks are 
assigned functions identified as receptions in the interaction modeling phase. Element in-
stances are then connected using connectors, forming the foundation for dynamic behav-
ior modeling. Figure 6 presents the architectural view reduced to the elements of the traffic 
sign recognition function, including the respective interface definitions.

Figure 6 Internal Block Diagram 

Figure 5 Sequence diagram
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3   Leveraging Dynamic System Behavior for Early Validation in Model-Based 
Development

In the realm of system development, validating system requirements at early stages is crucial 
for ensuring that the final product meets its intended specifications. Dynamic, or executable, 
system behavior plays a pivotal role in this early validation process, as it allows for the 
simulation and testing of system requirements while the model-based specification remains 
virtual.

Executable system models are derived from the system architecture and static behavioral 
models, providing a functional basis for simulating system behavior. These models enable 
developers to explore how the system will perform under various conditions, offering insights 
into potential issues and areas for improvement before physical prototypes are created.

The SysML language offers diagrams for behavior modeling, including activity diagrams, 
sequence diagrams and state machines. These diagrams can be executed using appropriate 
tools, transforming static models into dynamic simulations that mimic real-world operations. 
By executing these SysML models, developers can validate system requirements and refine 
system designs in a controlled, virtual environment.

A key aspect of this approach is the integration of inputs and outputs from executable SysML 
models with simulated sensors, such as image recognition systems, and actors, like vehicle 
dynamic simulations. This integration establishes a Model-in-the-Loop (MiL) environment, 
which serves as a foundational step towards creating digital twins. MiL environments facilitate 
comprehensive system validations and verifications, allowing developers to test system 
behavior in a simulated setting that closely resembles real-world conditions.

The results obtained from MiL simulations can be transferred back to lifecycle management 
tools, ensuring traceability for testing aspects. This feedback loop guarantees that all testing 
activities are documented and linked to the original system requirements, providing a clear 
audit trail and supporting continuous improvement throughout the development process.

Showcase implementation

Dynamic behavior modeling, on the other hand, involves executable simulation, meaning 
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the model can be run to observe and analyze system behavior in real-time or through con-
trolled scenarios. It allows for time-dependent changes, interactions, and execution-based 
validation. This approach helps in testing system functionality, verifying correctness, and 
analyzing behavior under different conditions.

The process consists of the state machine diagram modeling itself and the subsequent ex-
ecution. A comprehensive simulation of the system and the actors requires behavioral rep-
resentation of all involved elements. Each involved element owns a state machine diagram. 
The cross-diagram interactions are realized by Send Actions, which can be recognized by 
the arrow-like elements in Figure 7. The respective arrivals are located on transitions of the 
state machine diagram of another element.

As indicated in the Activity Diagram in the previous chapter, the system can either be active 
or inactive. This is realized by the two main states on the right and left in Figure 7. Both 
states have a substate, in which the received information is processed. The user-friendly 
information sent to the actor Driver Display, which takes place in both states. The active 
state extends this behavior by two substates and corresponding Send Actions. The system 
interacts with the actor Longitudinal Control by sending velocity setpoints. It can either  be 
in the state, where the velocity is restricted to the current speed limitation, or in the state, 
where the velocity is restricted to recommended speed. Being in one of these substates, the 
system waits for a new signal.

After structurally modeling the state machine diagram, operations, receptions, and their 
corresponding events are involved. These are reused from sequence modeling or newly 
defined, when necessary. Operations do not have function bodies so far, which are added 
here. The return type is defined in this step as well. Operations are placed on the state’s 
entry or exit or act as an effect to a transition. Events are used in Send Actions to enable 
interaction, as mentioned above. The respective receptions are typically located on transi-
tions, where they act as triggers. Otherwise, they can be received by exclusive Accept Event 
Actions.

As indicated in the previous sections, the input would be normally provided by the ac-
tor Environment, since it contains the traffic signs. The whole showcase consists of three 
sub-showcases, MBSE, AI on edge and ADAS. The data is provided by the camera (AI on 
edge) and received by the operation “Receive signal from sensor”. The ADAS vehicle simula-
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tion is controlled by the output of the model and send in the operations “Adapt ego velocity 
to speed limit” and “Adapt ego velocity to recommended speed”.

Your Ideal Partner for MBSE Implementation

Digital transformation powered by emerging technologies unlocks unprecedented oppor-
tunities – but also increases complexity due to new collaboration models, dependability 
requirements, and regulatory compliance challenges. Successfully implementing Mod-
el-Based Systems Engineering (MBSE) demands comprehensive expertise across process-
es, methods, tools, and IT, paired with practical experience both in implementation and in 
day-to-day applications.

Figure 7 State machine diagram of the use case under consideration
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in-tech is driving your transformation end-to-end with unique MBSE expertise, a prac-
tical engineering mindset, and integrated Systems, Software, and IT skills, enabling 
sustainable change with lasting impact.

We support you:

Tailored Processes & Methods

 Customer-specific adaptation ensures effective and efficient MBSE implementation.

  Expertise in integrating Product Line Engineering and variant management optimizes 
your product portfolio.

  Incorporating Safety and Security directly into MBSE practices guarantees compliance 
and minimizes risk.

Focused Training & Rollout Support

  Specialized training and coaching to foster seamless adoption and maximize 
acceptance.

  Comprehensive rollout support for smooth and efficient transitions.

  Proactive change management and continuous monitoring to ensure long-term success.

Customized Tool Integration

  Seamless integration into your existing toolchains guarantees compatibility.

  In-house software, UX/UI expertise, and AI-driven automation enable extensive tool 
customization.

  Data migration expertise ensures continuity and integrity.

  Long-standing partnerships with top tool manufacturers like Dassault, Siemens, and IBM 
deliver best-in-class solutions tailored specifically to your needs.

Comprehensive Engineering Services

  Hands-on modeling and rapid prototyping during initial phases demonstrate immediate 
MBSE value.
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  Deep methodological expertise across requirements management, architecture and 
design, safety and security, testing and validation.

in-tech doesn’t just understand MBSE theoretically – we implement and apply it practically, 
ensuring real-world applicability, efficiency, and competitive advantage. Our cross-industry 
expertise and end-to-end engineering capability make us uniquely positioned to guide your 
successful MBSE transformation.

Partner with in-tech and turn complexity into clarity, efficiency, and lasting compet-
itive strength.
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Contact

If you have any questions, please do not hesitate to contact us. Please contact us via 
smart-industry@in-tech.com

in-tech contact:

André Brückmann 
Technical Director Systems Engineering 
Email: andre.brueckmann@in-tech.com


