
Mastering complexity with early validation and
Model-based Development

Beat the complexity with MBSE

www.in-tech.com

https://in-tech.com
https://in-tech.com

2

The Hannover Messe 2025 Showcase

Digital transformation is reshaping industries, driving products toward intelligent, software-
defined solutions. However, increasing complexity poses significant challenges. To address
these, a structured approach combining Systems Engineering, AI-driven development, and
Virtual Validation is essential. Our showcase demonstrates these key concepts using a real-
world example: traffic sign recognition in a vehicle.

Smart Systems by Design -
Early validation with MBSE
Master complexity with early
validation and model-based
development

AI at the Edge - Intelligence
Where It Matters
Decentralized AI for real-time
detection and fast decision
making

Virtual ADAS - Simulating
Safety, Driving Innovation
Testing and validating advan-
ced driver assistance before
deployment

Car Simulator
(CARLA)

Image Recognition
(AI)

Executable
MBSE Model

3

Content Overview

Introduction

1. Four Big Challenges Every Systems Engineer Faces nowadays 4

2. The Transformation Challenge ... 5

3. MBSE: Your Single Source of Truth for Complex Systems .. 5

The Hannover Messe 2025 Showcase

1. Integrating Requirements Engineering into
Model-Based Systems Engineering .. 7

2. Model-Based Specification of System Architecture and Static Behavior 11

3. Leveraging Dynamic System Behavior for Early Validation
in Model-Based Development .. 16

Your Ideal Transformation Partner .. 18

4

Introduction

1 Four Big Challenges Every Systems Engineer Faces Today.

The digital transformation is reshaping industrial and automotive products, transitioning
them from electromechanical systems to intelligent, software-driven solutions. Cloud
technologies, IoT, and AI enable entirely new functionalities that enhance user experience
and set new industry standards. These advancements pave the way for innovative business
models, such as digital services and personalized customer experiences. At the same time,
customer expectations have evolved. They now demand smart products that are always up
to date, easy to use, and customizable to individual preferences.

While these advancements bring enormous opportunities, they also introduce significant
challenges. The complexity of developing and maintaining software-defined products
has increased dramatically, making traditional development methods insufficient. The
challenges associated with this transformation can be categorized into four primary areas.

Managing these complexities with traditional development methods is highly challenging
and often leads to inefficiencies and increased risks. The increasing integration of software,
evolving product architectures, and accelerating market demands require new approaches
to ensure efficiency, reliability, and compliance across the entire product lifecycle.

 Software defined products
 System of Systems
 Multi-domain
 New Technologies (e.g. AL)
 Variants and Platforms
 Shorter Product Lifecycles (TTM)
 Continuous Development
 Agile Engineering
 Circular Economy
 End of Life Management

System
Complexity

System
Dependability

Regulatory &
Ethical
Compliance

Multidisciplinary
Collaboration

 Large Organisations
 Interdisciplinary Teams
 Partner and supply chains
 Global cooperation
 Cultures, Timezones, Languages
 Agile and hybrid methodologies
 Product as a service models

 Safety
 Cybersecurity
 Reliability
 Avalability
 Resilience
 Sustainability

 Regulatories
 Legal
 Directives
 Norms
 Privacy

Transformation

5

2 The Transformation Challenge

The introduction of a holistic systems engineering approach is not just about purchasing
and integrating new tools. It represents a fundamental transformation of the development
process and requires a structured approach tailored to an organization’s current maturity
level. This transformation encompasses adjustments to processes, methods, toolchains,
and IT systems, involving their definition, rollout, and continuous optimization.

The primary focus of this whitepaper is on the aspect of Model-Based Systems Engineering
(MBSE), which we will detail in the following sections and demonstrate through our showcase.

3 MBSE: Your Single Source of Truth for Complex Systems

In today’s rapidly evolving product development landscape, both organizational and
technical dependencies are dramatically increasing. Products are becoming interdisciplinary,
development cycles more agile and faster, and expectations for transparency and end-
to-end consistency have never been higher. Traditionally, systems engineering has relied
on documents or various discipline-specific tools that describe different aspects - such as
specifications, functional descriptions, or interface documentation - in natural language.
However, these documents frequently contain redundant information, quickly losing

6

consistency over time and across multiple contributors. Additionally, natural language is
often ambiguous, information is scattered, and administrative overhead remains substantial
as different stakeholders require individually tailored views.

How can these challenges be addressed effectively? MBSE offers a powerful solution. With
MBSE, all critical information relevant to systems engineering - such as requirements,
interfaces, systems, functions, properties, and parameters, - is captured and defined
centrally within a single, cohesive database or model. Dependencies among elements
are explicitly represented through hierarchical structures, instantiations, or linkages. A
standardized notation, such as the Systems Modeling Language (SysML), is utilized. SysML
Version 1 extends the Unified Modeling Language (UML), while the upcoming Version 2
introduces further enhancements specifically designed for systems engineering.

This centralized model enables stakeholders to generate multiple tailored views suitable
for diverse project phases or specific stakeholder needs. Such views may include various
SysML-defined diagrams (e.g., block diagrams, activity diagrams, sequence diagrams),
structured lists (such as Bill of Materials or interface definitions), code artifacts, or even
traditional documents required by reviewers or regulatory authorities.

The benefits of adopting MBSE are significant:

Consistency: Because each element exists only once within a central model, all derived views
and documentation consistently reference the same information, eliminating redundancy
and discrepancies.

Transparency: Centralizing information enhances visibility across disciplines and
departments, promoting communication, collaboration, and reducing silo mentality.

Traceability: Explicitly modeled dependencies significantly improve traceability, vital for
verification processes, safety-critical systems, comprehensive testing, and impact analyses
necessary for managing system changes.

Clarity: Using a standardized, structured notation reduces ambiguities typically associated
with natural language, ensuring greater precision and clearer communication.

In short, MBSE fundamentally transforms systems engineering by providing a unified,
transparent, traceable, and precise approach to managing complexity in product
development.

7

The Hannover Messe 2025 Showcase

1 Integrating Requirements Engineering into Model-Based Systems Engineering

In the realm of system development, defining system requirements is a crucial step that is
often facilitated by specialized requirements engineering tools. These tools play a vital role in
capturing, analyzing, and managing requirements to ensure that the final system meets the
intended needs and specifications. However, as the complexity of systems increases, there
is a growing need to integrate requirements engineering into a model-based environment,
thereby ensuring the continuity of the digital thread throughout the development process.

Model-Based Systems Engineering (MBSE) offers a powerful approach to system
development by providing a structured framework for modeling and analyzing complex
systems. While MBSE does not replace traditional requirements engineering, it enhances
its capabilities by making it an integral part of the digital thread. This integration allows for
seamless traceability and verification of requirements, ensuring that they are consistently
linked to architecture model elements.

One of the key benefits of shifting to model-based requirements engineering is the ability
to demonstrate standard-compliant traceability. By linking requirements directly to
architecture model elements, organizations can provide proof of traceability that meets
industry standards. This is particularly important in regulated industries where compliance
with standards is mandatory.

Requirements can be directly modeled using languages such as SysML, which provides a
standardized way to represent system requirements within the model-based environment.
Additionally, requirements can be imported or reflected into the model-based environment
using lifecycle management tools and standardized interfaces like Open Services for Lifecycle
Collaboration (OSLC). This flexibility ensures that requirements are accurately captured and
maintained throughout the system development lifecycle.

8

Showcase implementation

The development of an Advanced Driver Assistance System (ADAS) controller, specifically
designed for traffic sign recognition, is a complex process that involves several critical steps.
This showcase highlights the creation of an ADAS controller, referred to as ADS, using the
example of a traffic sign recognition system as part of the system functionality.

The initial phase of the development process is the definition of system requirements, as
illustrated in figure 1. These requirements serve as the foundation for the subsequent mod-
el-based architecture and behavior specification. They establish the functional framework
necessary for the traffic sign recognition system and outline the intended reactions of the
ADAS controller. The showcase uses basic SysML notation for the modeling of the require-
ments directly in the MBSE toolchain.

System
Requirements

System
Architecture / Static

Behavior
Analysys

Dynamic Behavior
Analysis / Executable

model

Traced to Reqiurements

Data exchange

Simulates static behavior

Validation results

Import (e.g. OSLC)

MBSE / SysML-Model

MIL (Model in the loop)

AI on edge

ADAS simulation

PLM system

9

The primary function of the system is to accurately recognize speed limitations and identify
potential danger areas on the road. Recognized speed limits are then used as input for the
Adaptive Cruise Control (ACC) system. This integration ensures that the vehicle adjusts its
speed according to the detected traffic signs, enhancing safety and compliance with road
regulations.

In cases where errors occur in the detection of traffic signs or when warning signs, such as
upcoming road works, are correctly identified, the system is designed to deactivate the ACC.
Additionally, a warning message is issued to the driver, alerting them to the situation and
prompting them to take appropriate action.

Figure 1 Excerpt from the list of system requirements displayed in a table format

10

To ensure traceability, the system requirements are directly linked to use case elements
within the model through SysML trace relationships, as depicted in figure 2. These use cas-
es form part of the forthcoming static behavioral model, providing a clear and structured
representation of the system’s intended functionality. For the showcase only one use case
for the reaction to recognized traffic signs is used.

Modeling use cases can be interpretated as part of the system context definition or a black
box behavioral view. Using SysML Use Case diagrams, the involved actors, which means
elements from the system context interacting with the system of interest, such as parts of
the vehicle or the vehicle’s surroundings are identified. A graphical representation including
the relationships between actors (active or passive) and the use case is shown in Figure 3.

Figure 2 Trace linkage of the use cases to the system requirements

11

Analyzing the requirements gives us an indication of which actors are involved in addition
to the system itself.

The Environment plays a vital role in the use case. It surrounds the vehicle and contains
the traffic signs and delivers the input upon which the system will react. ADS Management
is superordinate to the system under consideration and controls whether the system is ac-
tive or inactive. Driver Display and Longitudinal Control consume the output in form of
the velocity setpoint and messages to the driver. It is important to mention that the actor
Environment is substituted by the external AI on edge device.

2 Model-Based Specification of System Architecture and Static Behavior

The development of complex systems necessitates a structured approach to defining system
architecture, which is grounded in the initial system requirements. This process involves
creating model-based specifications that encompass various architectural representations,

Figure 3 Modeling of the use case under consideration

12

including functional, logical, and physical architectures. Each representation serves a distinct
purpose, and their necessity must be aligned with specific project or product constraints.

Functional and logical architectures are solution-independent, focusing on the essential
functions and logical operations of the system without delving into specific solutions. In
contrast, physical architectures are solution-dependent, detailing the tangible components
and their interactions within the system. The decision to include each type of architecture
in the specification process depends on the unique requirements and limitations of the
project or product.

Static, or non-executable, system behavior is often incorporated into the solution-
independent functional architecture. This aspect of the architecture provides a clear
understanding of how the system is expected to function under various conditions,
without specifying the exact implementation details.

The SysML language plays a crucial role in this model-based approach by offering
standardized diagrams and modeling options for both architecture and behavior
modeling. SysML facilitates essential linking and traceability relationships throughout the
architecture and behavior model, ensuring that all elements are interconnected and can
be traced back to the original system requirements.

One of the significant advantages of adopting a model-based architecture and behavior
specification is the ability to integrate variant management within a Product Line
Engineering (PLE) approach. This integration can occur on a functional basis, allowing for the
management of different functional variants within a product line. Additionally, it supports
trade-off studies to evaluate various physical realization variants, enabling organizations
to make informed decisions about the most suitable physical implementations.

Showcase implementation

We now analyze the functional aspects of the “React to Traffic Signs” use case. The func-
tional analysis is separated from the foundational model and contains replicates of the use
case and actor elements. This avoids unintended interactions when multiple analyses are

13

performed. The upcoming static behavioral modeling is clearly traceable to the respective
use case and its related system requirements.

The static behavior modeling process is divided into Activity Modeling and Interaction
(Sequence) Modeling. Static behavior modeling focuses on analyzing and representing a
system’s behavior and structure without execution. It describes how components relate to
each other and what possible states exist, but it does not simulate changes over time or in-
teractions in real execution. The primary goal is to understand and document the system’s
potential behavior based on predefined rules and relationships.

Activity Modeling consolidates textual requirements into a unified behavioral context,
identifying dependencies and behavioral cases. It emphasizes the logical sequence of activ-
ities while disregarding timing aspects. By modeling a single SysML activity diagram, we cap-
ture an overarching view of system functions and interactions between the system under
consideration and actors. The step allows capturing a white box view of the system function
or use case. Figure 4 illustrates the activity diagram. The control flow goes from top to bot-
tom in a linear manner. Four diamond-shaped elements are located on the diagram. The
first two form the Decision Nodes based on which the behavioral cases are differentiated.
First node distinguishes whether the system is currently active or inactive. Nevertheless,
three basic actions are performed right from the beginning in both cases. If the system is
inactive, the action sequence is immediately terminated (Right-pointing path). If the system
is active, the second node further differentiates upon which traffic sign was detected. A
distinction is made between traffic signs indicating speed limitations, end of speed limita-
tions and hazards. Additionally, the possible case of non-interpretability is considered. Sub-
sequently individual actions are taken. The last two rhombic elements represent the Merge
Nodes, at which the control flows converge.

14

Interaction Modeling examines each possible information flow from the activity diagram,
indicated by the decision nodes. This leads to a set of scenarios directly derived from the
activity modeling represented by SysML sequence diagrams, incorporating relative or ab-
solute timing where needed. For verification and validation aspects, these scenarios can be
used a basis for the test case definition.

As a bridge to dynamic (or executable) behavior modeling, this step introduces operations
(functions performed by an element) and receptions (functions triggered by events). Argu-
ments can utilize complex SysML data structures, extending beyond primitive data types.
Figure 5 depicts the left path of the activity diagram, where operations appear as self-mes-
sages, and receptions as inter-lifeline messages. Condition Marks, representing activity dia-
gram Guards, aid case identification.

Figure 4 Activity modeling of selected use case

15

Finally, an SysML Internal Block Diagram is created as part of the system architecture,
taking all actors and exchanged information between them and the system under con-
sideration into account. These interfaces between the system and actors are modelled as
proxy ports, typed by interface blocks. To maintain model consistency, interface blocks are
assigned functions identified as receptions in the interaction modeling phase. Element in-
stances are then connected using connectors, forming the foundation for dynamic behav-
ior modeling. Figure 6 presents the architectural view reduced to the elements of the traffic
sign recognition function, including the respective interface definitions.

Figure 6 Internal Block Diagram

Figure 5 Sequence diagram

16

3 Leveraging Dynamic System Behavior for Early Validation in Model-Based
Development

In the realm of system development, validating system requirements at early stages is crucial
for ensuring that the final product meets its intended specifications. Dynamic, or executable,
system behavior plays a pivotal role in this early validation process, as it allows for the
simulation and testing of system requirements while the model-based specification remains
virtual.

Executable system models are derived from the system architecture and static behavioral
models, providing a functional basis for simulating system behavior. These models enable
developers to explore how the system will perform under various conditions, offering insights
into potential issues and areas for improvement before physical prototypes are created.

The SysML language offers diagrams for behavior modeling, including activity diagrams,
sequence diagrams and state machines. These diagrams can be executed using appropriate
tools, transforming static models into dynamic simulations that mimic real-world operations.
By executing these SysML models, developers can validate system requirements and refine
system designs in a controlled, virtual environment.

A key aspect of this approach is the integration of inputs and outputs from executable SysML
models with simulated sensors, such as image recognition systems, and actors, like vehicle
dynamic simulations. This integration establishes a Model-in-the-Loop (MiL) environment,
which serves as a foundational step towards creating digital twins. MiL environments facilitate
comprehensive system validations and verifications, allowing developers to test system
behavior in a simulated setting that closely resembles real-world conditions.

The results obtained from MiL simulations can be transferred back to lifecycle management
tools, ensuring traceability for testing aspects. This feedback loop guarantees that all testing
activities are documented and linked to the original system requirements, providing a clear
audit trail and supporting continuous improvement throughout the development process.

Showcase implementation

Dynamic behavior modeling, on the other hand, involves executable simulation, meaning

17

the model can be run to observe and analyze system behavior in real-time or through con-
trolled scenarios. It allows for time-dependent changes, interactions, and execution-based
validation. This approach helps in testing system functionality, verifying correctness, and
analyzing behavior under different conditions.

The process consists of the state machine diagram modeling itself and the subsequent ex-
ecution. A comprehensive simulation of the system and the actors requires behavioral rep-
resentation of all involved elements. Each involved element owns a state machine diagram.
The cross-diagram interactions are realized by Send Actions, which can be recognized by
the arrow-like elements in Figure 7. The respective arrivals are located on transitions of the
state machine diagram of another element.

As indicated in the Activity Diagram in the previous chapter, the system can either be active
or inactive. This is realized by the two main states on the right and left in Figure 7. Both
states have a substate, in which the received information is processed. The user-friendly
information sent to the actor Driver Display, which takes place in both states. The active
state extends this behavior by two substates and corresponding Send Actions. The system
interacts with the actor Longitudinal Control by sending velocity setpoints. It can either be
in the state, where the velocity is restricted to the current speed limitation, or in the state,
where the velocity is restricted to recommended speed. Being in one of these substates, the
system waits for a new signal.

After structurally modeling the state machine diagram, operations, receptions, and their
corresponding events are involved. These are reused from sequence modeling or newly
defined, when necessary. Operations do not have function bodies so far, which are added
here. The return type is defined in this step as well. Operations are placed on the state’s
entry or exit or act as an effect to a transition. Events are used in Send Actions to enable
interaction, as mentioned above. The respective receptions are typically located on transi-
tions, where they act as triggers. Otherwise, they can be received by exclusive Accept Event
Actions.

As indicated in the previous sections, the input would be normally provided by the ac-
tor Environment, since it contains the traffic signs. The whole showcase consists of three
sub-showcases, MBSE, AI on edge and ADAS. The data is provided by the camera (AI on
edge) and received by the operation “Receive signal from sensor”. The ADAS vehicle simula-

18

tion is controlled by the output of the model and send in the operations “Adapt ego velocity
to speed limit” and “Adapt ego velocity to recommended speed”.

Your Ideal Partner for MBSE Implementation

Digital transformation powered by emerging technologies unlocks unprecedented oppor-
tunities – but also increases complexity due to new collaboration models, dependability
requirements, and regulatory compliance challenges. Successfully implementing Mod-
el-Based Systems Engineering (MBSE) demands comprehensive expertise across process-
es, methods, tools, and IT, paired with practical experience both in implementation and in
day-to-day applications.

Figure 7 State machine diagram of the use case under consideration

19

in-tech is driving your transformation end-to-end with unique MBSE expertise, a prac-
tical engineering mindset, and integrated Systems, Software, and IT skills, enabling
sustainable change with lasting impact.

We support you:

Tailored Processes & Methods

 Customer-specific adaptation ensures effective and efficient MBSE implementation.

 Expertise in integrating Product Line Engineering and variant management optimizes
your product portfolio.

 Incorporating Safety and Security directly into MBSE practices guarantees compliance
and minimizes risk.

Focused Training & Rollout Support

 Specialized training and coaching to foster seamless adoption and maximize
acceptance.

 Comprehensive rollout support for smooth and efficient transitions.

 Proactive change management and continuous monitoring to ensure long-term success.

Customized Tool Integration

 Seamless integration into your existing toolchains guarantees compatibility.

 In-house software, UX/UI expertise, and AI-driven automation enable extensive tool
customization.

 Data migration expertise ensures continuity and integrity.

 Long-standing partnerships with top tool manufacturers like Dassault, Siemens, and IBM
deliver best-in-class solutions tailored specifically to your needs.

Comprehensive Engineering Services

 Hands-on modeling and rapid prototyping during initial phases demonstrate immediate
MBSE value.

20

 Deep methodological expertise across requirements management, architecture and
design, safety and security, testing and validation.

in-tech doesn’t just understand MBSE theoretically – we implement and apply it practically,
ensuring real-world applicability, efficiency, and competitive advantage. Our cross-industry
expertise and end-to-end engineering capability make us uniquely positioned to guide your
successful MBSE transformation.

Partner with in-tech and turn complexity into clarity, efficiency, and lasting compet-
itive strength.

21

Contact

If you have any questions, please do not hesitate to contact us. Please contact us via
smart-industry@in-tech.com

in-tech contact:

André Brückmann
Technical Director Systems Engineering
Email: andre.brueckmann@in-tech.com

